

ID Material: R. Antich Revision: 5

Date: 6/25/18

TTP128 CARBON FRICTION PAPER

TTP128 has a structure of highly conductive fibers designed to provide outstanding thermal capability. The use of porous carbonaceous materials improves the stability of the torque curve over a wide range of temperatures and pressures.

- Low static to dynamic coefficient of friction for enhanced engagement characteristics
- Smooth engagement
- Excellent energy capability
- Good wear resistance

Material Data

Typical Applications

- Wheel brakes, LSD
- Transmission clutch

Mating Material

- Surface finish < 0.5μm Ra (20μ")
- Steel hardened & tempered
- Cast Steel
- Grey cast iron

Friction Coefficient (wet)

• Static:	0.09	-	0.13
• Dynamic:	0.11	-	0.13

Recommended Load

- Max dynamic pressure: 4.5 N/mm² (653 Lbf/in²)
- Max rubbing speed: 45 m/s (147 Ft/sec)
- Max specific power: 4.0 W/mm² (3.4 HP/in²)

Oil Grooving

• Multi-pass tangential groove patterns in variety of configurations

• Grooves can either be pressed or machined

Dimensions

Price Level :

- Friction thickness:
 - 0.50mm (0.02") ~ 1.20mm (0.05")
- Friction diameter: 1,200 mm (47") max 50 mm (2") min

\$\$\$

Microstructure of TTP128

The above data is taken from specific test parameters therefore results can vary in different application conditions

www.protecfriction.com

answers@protecfriction.com

